메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
최근 인터넷의 급속한 성장과 더불어 전자메일 (E-Mail)을 통신 및 정보, 의사교환의 필수적인 매체로 사용 되어지고 있다. 그러나 편리하고 비용이 들지 않는 장점을 이용해 엄청난 양의 스팸 메일이 매일같이 쏟아져 오고, 그 문제의 심각성에 정보통신부는 ‘정보통신망 이용촉진 및 정보보호 등에 관환 개정안’이라는 새로운 법률까지 만들었다. 본 논문에서는 기존의 문서 분류에 널리 쓰이던 나이브 베이지안 분류자 (naive Bayesian classifier) 보다 개선된 가충치가 부여된 베이지안 분류자 (weighted Bayesian classifier)와 정보통신부의 개정안을 준수하는 메일을 분류하기 위한 전처리 단계 그리고 사용자의 행동을 학습하여 보다 정확한 분류를 가능하게 지능형 에이젼트 (intelligent agent)가 결합된 형태의 스팸 메일 필터링 시스템 (spam mail filtering system)을 제안한다. 제안된 시스템에서는 사용자가 직접 규칙을 넣을 필요 없이 학습한 데이타를 가지고 자동적으로 스팸 메일을 분류할 수가 있는데, 특히 이메일의 특징 추출 (feature extraction)을 이용하여 상대적으로 스팸/논스팸 판별에 비중이 큰 단어들에 대해 가중치를 부여함으로서 필터링의 성능향상을 도모하였다. 실험에서는 제안된 시스템의 최적의 성능 평가를위해서 일반 나이브 베이지안 필터링시의 성능과 이메일 헤더정보, 특정 Tag들 그리고 하이퍼링크 부분에 가중치를 준 베이지안 필터링, 마지막으로 4 가지를 결합한 상태의 필터링 성능을 각각 비교 분석하였다. 그 결과 제안하는 시스템이 나이브 베이지안 분류자를 이용한 시스템보다 정확도에서는 5.7% 저조한 성능을 보였으나, 재현율에서 33.3%, F-measure에서 31.2% 우수한 성능향상을 보였다.

목차

요약

Abstract

1. 서론

2. 관련연구

3. 스팸 메일에서의 특징 추출(Feature Extraction)

4. 제안하는 스팸 메일 필터링 시스템

5. 실험 및 결과

6. 결론

참고문헌

저자소개

참고문헌 (20)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-017890856