메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
전자 메일은 매우 많은 사람들이 사용하는 편리하고 효율적인 통신 수단이다. 그러나 전자메일 주소를 쉽게 획득할 수 있다면 점을 악용하기 때문에 사용자가 원하지 않는 메일 즉 스팸 메일에 대한 문제가 심각해지고 있다. 이러한 스팸 메일을 자동으로 분류해주는 스팸 필터는 주로 영어를 대상으로 하고 있으며, 규칙 기반 필터링보다는 통계적 학습을 통한 필터링 방법을 주로 사용하고 있다.
본 논문에서는 베이즈 정리를 기반으로 하는 3가지 분류 알고리즘을 한글 전자메일을 대상으로 하여 스팸 메일 특히 음란성 메일을 분류하는데 있어 그 성능을 평가하고자 한다. 실험 결과, 단어의 스팸일 확률만을 이용하는 방법이 나이브 베이즈 알고리즘이나 m-estimate를 이용하는 방법보다는 성능이 우수함을 알 수 있었다. 특히, 단어의 스팸일 확률만을 이용하는 방법은 false positive rate를 0%로 유지하면서도 다른 방법들보다는 필터링을 잘 해내고 있음을 확인할 수 있었다. 그리고, 자질 선정에서는 명사나 명사/형용사를 사용할 경우에 그 에러율이 가장 적었다.

목차

요약
1. 서론
2. 관련 연구
3. 성능 평가한 세 가지 알고리즘
4. 실험 및 평가
5. 결론 및 향후 연구
6. 감사의 글
참고 문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0