메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (4)

초록· 키워드

오류제보하기
능동적 학습(active learning)은 제한된 시간과 인력으로 가능한 정확도가 높은 분류기(classifier)를 생성하기 위하여, 훈련집합에 추가할 예제 즉 문의예제(query example)의 선정과 확장된 훈련집합으로 다시 학습하는 과정을 반복하여 수행한다. 능동적 학습의 핵심은 사용자에게 카테고리(category) 부여를 요청할 문의예제를 선정하는 과정에 있다. 효과적인 문의예제를 선정하기 위하여 다양한 방안들이 제안되었으나, 이들은 매 문의단계마다 하나의 문의예제를 선정하는 경우에 가장 적합하도록 고안되었다. 능동적 학습이 복수의 예제를 사용자에게 문의할 수 있다면, 사용자는 문의예제들을 서로 비교해가면서 작업할 수 있으므로 카테고리 부여작업을 보다 빠르고 정확할 수 있어 전반적인 학습기산의 단축에 큰 도움이 될 것이다 ... 전체 초록 보기

목차

요약

1. 서론

2. 예제간 유사도를 고려한 복수 문의예제 선정 방안

3. 실험 결과

4. 관련 연구

5. 결론 및 향후 연구

6. 참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-017980564