메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 능동적 학습이 보다 적은 수의 훈련예제로도 높은 학습성능을 달성할 수 있도록 군집화기법을 이용하여 초기훈련집합을 선정하는 방안을 제안한다. 본 제안 방안은 유사한 예제들보다는 다양한 예제들로 그리고 특수한 예제들보다는 보편적인 예제들로 구성한 집합이 학습에 유리할 것이라는 가정을 바탕으로, 먼저 k-means 군집화 기법으로 예제들을 군집화한 후, 각 군집을 가장 잘 표현하는 대표예제로 개별 군집의 중심점과 가장 가까운 예제를 선정하여 초기훈련집합을 구성한다. 또한 개별 군집의 중심점을 가상의 예제로 가정하여, 이와 연관된 대표예제의 카테고리를 부여함으로써 추가의 훈련예제로 활용하는 방안을 함께 제안한다. 여러 문서 분류 문제를 대상으로 실험한 결과, 본 제안 방안으로 선정한 초기훈련집합에서 출발한 능동적 학습이 임의로 선정한 초기훈련집합에서 출발한 경우에 비해 보다 적은 수의 훈련예제로도 동등한 성능을 달성할 수 있음을 확인하였다.

목차

요약

Abstract

1. 서론

2. 군집화 기법을 이용한 초기훈련집합 선정 방안

3. 실험 결과

4. 관련연구

5. 결론 및 향후 과제

참고문헌

저자소개

참고문헌 (21)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-017890649