메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
본 논문은 한국어 정보처리에서 발생하는 어휘 중의성 문제 중 한국어에서 그 심각성이 큰 동형이의어 중의성을 해결하기 위하여 사전 뜻풀이 말뭉치에서 구축한 의미정보(Semantic Information)와 이를 이용한 기존의 통계기반 동형이의어 분별 모델에 대한 실험 결과를 분석하여, 정확률 향상을 위한 새로운 동형이의어 NPH(New Prior Probability of Homonym sense) 가중치 및 인접 어절에 대한 거리 가중치 적용 모델을 제안한다.
사전 뜻풀이 말뭉치의 상위 고빈도 동형이의어 20개중 중의성이 높은 46개(명사 30개, 동사 16개)를 선별하고, 21세기 세종 계획에서 제공하는 350만 어절 품사 부착 말뭉치에서 이들 동형이의어를 포함하는 47,977개의 문장을 추출하여 실험을 하였다. 기존의 통계기반 동형이의어 분별 모델에서는 72.08%(명사 78.12%, 동사62.45%)의 정확률을 나타냈으나, NPH 가중치를 부여한 실험 결과 정확률이 평균 1.70% 향상되었으며, NPH와 거리 가중치를 함께 이용한 결과 평균 2.01% 정확률이 향상되었다.

목차

요약

Abstract

1. 서론

2. 관련 연구

3. 의미정보 구축 및 기존 동형이의어 분별 모델

4. 가중치를 적용한 통계기반 확률 모델

5. 실험 및 분석

6. 결론 및 향후 과제

참고문헌

저자소개

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-017932386