메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
Korean Institute of Information Scientists and Engineers 정보과학회논문지 : 데이타베이스 정보과학회논문지 : 데이타베이스 제31권 제1호
발행연도
2004.2
수록면
13 - 22 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
멀티미디어 데이타의 사용이 증가함에 따라 고차원 이미지 데이타에 대한 효율적인 색인과 검색 기법이 크게 요구되고 있다. 그러나 많은 노력에도 불구하고 현재의 다차원 색인 기법들은 고차원 데이타 공간에서 만족할 만한 성능을 보여주지 못하고 있다. 이러한 소위 차원의 저주를 해결하기 위해 최근에 차원을 줄이거나 근사 해를 구하는 등의 접근법이 시도되고 있지만 이러한 방법들은 근본적으로 정확도의 상실이라는 문제를 갖고 있다. 정확도의 보존을 위해 VA-file, LPC-file등과 같이 벡터 근사에 기반한 기법들이 최근에 개발되었다. 그러나 이 기법은 검색 성능이 색인 파일의 크기에 큰 영향을 받으며, 한번에 큰 검색 공간을 줄이는 계층 색인 구조의 장점을 상실한다. 본 논문에서는 이미지 데이타베이스에서 유사성 질의를 위한 새로운 계층 색인 구조인 GC-트리를 제안한다. GC-트리는 밀도 함수에 기초하여 데이타 공간을 적응적으로 분할하고, 색인 구조를 동적으로 생성한다. 이러한 특성을 갖는 GC-트리는 군집화된 고차원 이미지 데이타 검색에 훌륭한 성능을 나타낸다.

목차

요약

Abstract

1. 서론

2. GC - 트리

3. 알고리즘

4. 성능 평가

5. 결론

참고문헌

저자소개

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-017918155