메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
Korean Institute of Information Scientists and Engineers 정보과학회논문지 : 데이타베이스 정보과학회논문지 : 데이타베이스 제29권 제2호
발행연도
2002.4
수록면
128 - 137 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
이 논문은 고차원 이미지 데이타의 효율적인 색인을 위한 LCP+-file을 제시한다. 멀티미디어 데이타의 사용이 증가하면서 고차원 이미지 데이타의 색인과 검색의 지원에 대한 요구가 증가하고 있다. 최근에 고차원 데이타의 색인을 위해 벡터 근사에 기반한 LPC-file [5]이 개발되었다. LPC-file은 특히, 데이타집합이 균일하게 분포할 때는 좋은 성능을 나타내지만 클러스터(cluster)를 이룰 때는 성능이 하락한다. 본 논문은 강하게 클러스터를 이루는 이미지 데이타 집합에 대해 LPC-file의 성능을 향상시킨 LCP+-file을 제시한다. 기본 아이디어는 고밀도 클러스터를 갖는 부분 공간을 찾기 위해 데이타 공간을 적응적으로 분할하고, 그 공간에 대해 벡터 근사의 식별 능력을 향상시키기 위해 더 많은 수의 비트를 할당한다. 그러나 분할된 공간이 비트들을 공유하기 때문에 사용되는 전체 비트 수는 오히려 줄어든다. 실험 결과에 따르면 LCP+-file은 강하게 클러스터를 이루는 이미지 데이타 집합에 대해 LPC-file의 성능을 크게 향상시킨다.

목차

요약

Abstract

1. 서론

2. 관련 연구

3. LPC+ - file

4. 성능 평가

5. 결론

참고문헌

저자소개

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-017862376