메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
지문영상으로부터 특징점을 정확하게 추출하는 것은 효과적인 지문인식 시스템의 구축에 매우 중요하다. 하지만 지문영상의 품질에 따라 특징점 추출의 정확도가 달라지기 때문에 지문인식 시스템에서의 영상 전처리 과정은 시스템의 성능에 크게 영향을 미친다. 본 논문에서는 지문영상으로부터 명암값의 평균 및 분산, 블록 방향성 차, 방향성 변화도, 융선과 골의 두께 비율 등의 5가지 특징을 추출하고 계층적 클러스터링 알고리즘으로 클러스터링하여 영상의 품질 특성을 분석한 후, 습성(oily), 보통(neutral), 건성(dry)의 특성에 적합하게 영상을 개선하는 지식기반 전처리 방법을 제안한다. NIST DB 4와 인하대학교 데이타를 이용하여 실험한 결과, 클러스터링 기법이 영상의 특성을 제대로 구분함을 확인할 수 있었다. 또한 제안한 방법의 성능 평가를 위해 품질 지수와 블록 방향성 차이를 측정하여 일반적인 전처리 방법보다 지식기반 전처리 방법이 품질 지수와 블록 방향성 차이를 향상시킴을 확인할 수 있었다.

목차

요약

Abstract

1. 서론

2. 관련 연구

3. 지식기반 영상개선을 위한 지문영상의 품질 분석

4. 실험 및 결과

5. 결론 및 추후 연구

참고문헌

저자소개

참고문헌 (17)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-017890689