메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
서포트 벡터 머신은 얼굴인식이나 문자인식과 같은 다양한 패턴인식 문제에서 좋은 성능을 보여준다. 그러나 이러한 문제는 Quadratic Programming(QP) 문제에 관하여 몇 가지 단점을 가지고 있다. 일반적으로 대용량의 QP 문제를 해결하기 위해 많은 계산비용이 요구되며, QP 기반 시스템을 효과적으로 구현하는 것이 쉽지 않은 문제이다. 또한 대규모 데이터의 처리 시에는 입출력을 맞추기 또한 쉽지 않은 단점이 있다. 본 논문에서는 위의 단점을 극복하기 위하여 단일부류 문제를 최소제곱 서포트 벡터 머신을 기반으로 하여 해결하였다. 제안한 방법은 QP 문제를 해결하는 과 ... 전체 초록 보기

목차

요약

1. 서론

2. 관련 연구

3. 제안된 단일부류 최소제곱 서포트 벡터 머신

4. 실험 및 결과분석

참고 문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-017879095