메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국컴퓨터정보학회 한국컴퓨터정보학회논문지 한국컴퓨터정보학회 논문지 제17권 제3호
발행연도
2012.3
수록면
67 - 76 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
트래픽 분류는 트래픽 관리하는데 중요한 역할을 차지하고 있다. 전통적인 방법은 P2P와 암호화 트래픽을 제대로 분류할 수 없는 문제가 있다. 서포트 벡터 머신은 기존의 문제를 해결할 수 있고 병목 현상을 극복할 수 있는 유용한 분류 도구이다. 하지만 서포트 벡터 머신의 주요 장점은 이차 프로그래밍(QP)문제 때문에 큰 데이터 집단을 훈련하는데 시간을 소모한다. 그러나 유용한 서포트 벡터는 전체 데이터에서 극히 일부분이다. 만약 우리가 훈련전에 쓸모없는 벡터들을 삭제할 수 있다면, 시간을 절약하고 정확도를 유지할 수 있다. 이 논문에서 우리는 대규모 데이터를 다룰 때 훈련 속도를 빠르게 하기위해 순차적인 방법을 통해 쓸모없는 벡터들을 제거하기 위한 가능성을 논의하였다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0