메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
패턴인식은 전처리 과정에서 패턴들의 특징을 추출하고 이를 학습을 통하여 유사한 패턴들끼리 클러스터링을 한 다음 식별 과정을 거쳐 인식하게 된다. 본 연구에서는 OCR 시스템에서의 패턴 인식을 위한 패턴 분류 모델로서 퍼지 멤버쉽 함수를 도입하여 LVQ 학습 알고리즘을 최적화한 F-LVQ(Fuzzy Learning Vector Quantization)를 제안한다. 본 논문의 효율성을 검증하기 위하여 한글 및영어 22종의 글꼴에 대한 숫자 데이타 220개 패턴을 학습한 후 이를 다양한 형태로 변형시킨 4840개의 테스트 패턴에 대하여, 기존의 여러 가지 패턴 분류 모델과의 비교 분석을 통해 그 유효성과 강인성을 증명하였다.

목차

요약

Abstract

1. 서론

2. 관련 연구

3. F - LVQ(Fuzzy LVQ)

4. 실험 및 결과 분석

5. 결론 및 향후 연구 방향

참고문헌

저자소개

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-017863222