메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한기계학회 Journal of Mechanical Science and Technology Journal of Mechanical Science and Technology Vol.19 No.8
발행연도
2005.8
수록면
1,670 - 1,681 (12page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In-situ diagnosis of chiller performance is an essential step for energy saving business. The main purpose of the in-situ diagnosis is to predict the performance of a target chiller. Many models based on thermodynamics have been proposed for the purpose. However, they have to be modified from chiller to chiller and require profound knowledge of thermodynamics and heat transfer. This study focuses on developing an easy-to-use diagnostic technique that is based on adaptive neuro-fuzzy inference system (ANFIS). The effect of sample data distribution on training the ANFIS is investigated. It is found that the data sampling over to days during summer results in reliable ANFIS whose performance prediction error is within measurement errors. The reliable ANFIS makes it possible to prepare an energy audit and suggest an energy saving plan based on the diagnosed chilled water supply system.

목차

Abstract

Nomenclature

1. Introduction

2. Adaptive Neuro-Fuzzy Inference System (ANFIS)

3. Experiment

4. Data Processing

5. ANFIS-Based Prediction Model of Chiller Performance

6. Training ANFIS

7.Prediction of Chiller Performance with an ANFIS Model

8. Conclusions

Acknowledgments

References

참고문헌 (14)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-550-017850380