메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Amitabha Nath (North-Eastern Hill University) Fisokuhle Mthethwa (North-Eastern Hill University) Goutam Saha (North-Eastern Hill University)
저널정보
대한환경공학회 Environmental Engineering Research Environmental Engineering Research 제25권 제4호
발행연도
2020.8
수록면
545 - 553 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Rainfall-Runoff modeling plays a crucial role in various aspects of water resource management. It helps significantly in resolving the issues related to flood control, protection of agricultural lands, etc. Various Machine learning and statistical-based algorithms have been used for this purpose. These techniques resulted in outcomes with an acceptable rate of success. One of the pertinent machine learning algorithms namely Adaptive Neuro Fuzzy Inference System (ANFIS) has been reported to be a very effective tool for the purpose. However, the computational complexity of ANFIS is a major hindrance in its application. In this paper, we resolved this problem of ANFIS by incorporating one of the evolutionary algorithms known as Particle Swarm Optimization (PSO) which was used in estimating the parameters pertaining to ANFIS. The results of the modified ANFIS were found to be satisfactory. The performance of this modified ANFIS is then compared with conventional ANFIS and another popular statistical modeling technique namely ARIMA model with respect to the forecasting of runoff. In the present investigation, it was found that proposed PSO-ANFIS performed better than ARIMA and conventional ANFIS with respect to the prediction accuracy of runoff.

목차

ABSTRACT
1. Introduction
2. Models Used
3. Methodology
4. Results
5. Discussions
4. Conclusion
References

참고문헌 (40)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-539-000378778