메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문은 가우시안 혼합모형을 이용한 새로운 칼라 영상의 분할 알고리즘을 제안한다. 기존의 EM 알고리즘의 문제점인 국부적 최대값의 문제를 해결하기 위하여 최대 엔트로피의 원리를 이용하는 결정적 어닐링 EM 알고리즘을 소개하였고, 여러 색상들로 구성된 영상에 대하여 가우시안 혼합모형을 가정 하였으며, 결정적 어닐링 EM 알고리즘을 사용하여 이들의 모수를 추정하는 방법을 알아보았다. 또한 혼합모형에 성분의 수를 자동으로 결정할 수 있는 방법을 제시하였으며 선택된 최적의 혼합모형을 사용하여 각 화소에 대한 사후확률을 계산하고 이들의 최대값을 이용하여 영상분할을 실시하였다. 결정적 어닐링 EM 알고리즘이 기존의 EM 알고리즘보다 혼합모형의 모수를 더 정확하게 추정한다는 것과 혼합모형의 성분의 수를 결정하는 제안된 방법의 성능을 실험결과를 통하여 고찰하였고, 또한 두 가지 실제 영상을 통하여 제안된 알고리즘이 기존의 알고리즘 보다 영상을 더 효율적으로 분할할 수 있음을 보였다.

목차

요약

Abstract

1. 서론

2. 결정적 어닐링 EM 알고리즘

3. 결정적 어닐링 EM 알고리즘을 이용한 영상분할

4. 실험 및 결과

5. 결론

참고문헌

저자소개

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-017815175