메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
서창우 ([주]인스모바일 기술연구소) 한헌수 (숭실대학교 정보통신공학과) 이기용 (숭실대학교 정보통신공학과) 이윤정 (숭실대학교 정보통신공학과)
저널정보
한국음향학회 한국음향학회지 한국음향학회지 제24권 제3호
발행연도
2005.1
수록면
141 - 149 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
개개인의 음성을 이용한 화자식별에서, 화자 모델을 추정하는데 가우시안 혼합모델이 주로 사용된다. 최대 우도 추정을 갖는 가우시안 혼합모델의 파라미터 추정은 Expectation-Maximisation (EM)을 사용하여 얻을 수 있다. 그러나, EM 알고리즘은 초기값에 상당히 민감하고, 혼합성분의 개수를 미리 알고 있어야 하는 단점이 있다. 본 논문에서는, EM 알고리즘의 문제점을 해결하기 위하여 가우시안 혼합모델을 위한 점진적 ${\cal}k-means$ 알고리즘에 의한 초기값을 갖는 EM 알고리즘을 제안한다. 제안된 방법은 혼합성분의 개수를 점진적 ${\cal}k-means$ 방법을 이용하여 한번에 하나씩 혼합성분을 추정하여 최적의 혼합성분이 얻어 질 때까지 이를 반복 수행한다. 하나의 혼합성분이 추가될 때마다, 새로 얻어진 혼합성분과 이전에 구한 혼합성분들간의 상호 관계를 각각 측정한다. 이로부터, 통계적으로 독립인 최적의 혼합성분 개수를 추정할 수 있다. 제안된 방법의 성능을 확인하기 위하여 임의의 생성 데이터와 실제 음성을 사용하였다. 실험 결과에서, 제안된 방법이 기존의 방법보다 화자 식별 성능이 우수하였으며, 또한 성능을 유지하면서도 계산량 감소의 효과까지 볼 수 있었다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0