메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이정환 (안동대학교)
저널정보
한국멀티미디어학회 멀티미디어학회논문지 멀티미디어학회논문지 제15권 제6호
발행연도
2012.6
수록면
761 - 769 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 슈퍼픽셀과 FCM을 이용한 클러스터 초기값 설정방법과 이를 사용한 칼라영상분할을 연구한다. 클러스터링을 이용한 대표적인 칼라영상분할 방법으로 Fuzzy C-menas (FCM) 알고리즘을 많이 사용한다. FCM은 하나의 데이터가 각 클러스터에 서로 다른 소속도를 갖도록 한다. 그러나 FCM은 초기값 설정에 따라 국부적인 수렴문제가 발생한다. 따라서 초기값 설정문제는 매우 중요한데 본 연구에서는 슈퍼픽셀을 이용하여 클러스터의 초기값을 구하는 방법을 제안한다. 슈퍼픽셀은 원 영상에서 특성이 비슷한 화소들의 묶음으로 표현되는데 먼저 원 영상으로부터 슈퍼픽셀을 구하고 이를 La<SUP>*</SUP>b<SUP>*</SUP> 칼라특징공간에 투영하여 클러스터 초기값을 구한다. 제안방법에서 슈퍼픽셀의 수는 원영상의 화소 수보다 일반적으로 매우 적어서 클러스터 초기값 설정을 위한 고속처리가 가능하다. 제안된 알고리즘의 성능평가를 위해 다양한 칼라영상을 사용하여 컴퓨터 모의실험을 수행하였으며 실험결과 제안방법이 기존방법에 비해 영상분할 성능이 우수함을 알 수 있었다.

목차

요약
ABSTRACT
1. 서론
2. Fuzzy C-means(FCM) 알고리즘
3. 제안방법
4. 실험결과 및 고찰
5. 결론
참고문헌

참고문헌 (1)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2014-004-001423086