메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한전자공학회 전자공학회논문지-CI 전자공학회논문지 CI편 제42권 제4호
발행연도
2005.7
수록면
43 - 50 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
본 논문에서는 유전자 알고리즘을 이용한 새로운 적응적 특징 가중치 방식과 클래스별로 적용된 KNN(Nearest-Neighbor) 규칙을 이용한 새로운 패턴 인식 시스템을 제안한다. 패턴 인식 시스템의 성능을 향상시키기 위하여, 새로운 연산자를 갖는 유전자 알고리즘으로 가중치의 중간값을 결정함으로써 과잉 맞춤(overfitting)을 피하면서, 데이터의 분포에 따라 적절한 특징의 가중치를 찾는 새로운 특징 가중치 알고리즘을 제안한다. 또한, 제안하는 방법은 각각의 클래스를 가장 잘 표현하는 특징 공간들을 개별적으로 찾는다. KNN분류기는 클래스별로 찾은 특징 공간들을 이용하여 클래스에 따라 특징 공간을 변화시켜 미지 패턴의 클래스를 예측한다. 제안된 알고리즘은 Concordia대학의 handwritten numeral database에 적용시켜 그 성능을 확인하였다.

목차

요약

Abstract

Ⅰ. 서론

Ⅱ. 특징 가중치 방법의 이론적 배경

Ⅲ. Pattern Recognition system 설계

Ⅳ. 실험

Ⅴ. 결론

참고문헌

저자소개

참고문헌 (8)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-017814618