메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이기준 (광주보건대학)
저널정보
한국콘텐츠학회 한국콘텐츠학회논문지 한국콘텐츠학회논문지 제9권 제8호
발행연도
2009.8
수록면
57 - 63 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
기존의 주성분 분석을 이용한 물체 인식 기술은 모델 영상내의 각각의 물체의 대표 값을 만든 후에 실험영상을 물체 공간에 투영 시켜서 나온 성분과 대표 값의 거리를 비교하여 인식하게 된다. 그러나 단순히 기존의 방법인 point to point 방식인 단순 거리 계산은 오차가 많기 때문에 본 논문에서는 개선된 Class to Class방식인 k-Nearest Neighbor을 이용하여 몇 개의 연속적인 입력영상에 대해 각 각의 모델영상들을 인식의 단위로 이용하였다. 또한, 물체 인식을 하는데 있어 본 논문에서 제안한 주성분 분석법은 물체영상 자체를 계산하여 인식하는 게 아니라 물체 영상 공간이라는 고유 공간을 구성한 후에 단지 기여도가 큰 5개의 벡터로만 인식을 수행하기 때문에 자원 축소의 효과까지 얻을 수 있었다.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. 전체 시스템 구성도
Ⅲ. 물체 영상의 정규화
Ⅳ. 주성분 분석을 이용한 물체인식
Ⅴ. 물체 인식에 대한 실험결과
Ⅵ. 결론
참고문헌
저자소개

참고문헌 (12)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-004-018649608