메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Morphological Analysis of Korean has known to be a very complicated problem. Especially. the degree of part-of-speech(POS) ambiguity is much higher than English. Many researchers have tried to use a hidden Markov model(HMM) to solve the POS tagging problem and showed arround 95% correctness ratio. However, the lack of lexical information involves a hidden Markov model for POS tagging in lots of difficulties in improving the performance. To alleviate the burden, this paper proposes a method for combining multiword units, which are types of lexical information, into a hidden Markov model for POS tagging. This paper also proposes a method for extracting multiword units from POS tagged corpus In this paper, a multiword unit is defined as a unit which consists of more than one word. We found that these multiword units are the major source of POS tagging errors. Our experiment shows that the error reduction rate of the proposed method is about 13%.

목차

Abstract

Ⅰ. Introduction

Ⅱ. Background

Ⅲ. Combination of Multiwords and HMM

Ⅳ. Experiments and Evaluation

Ⅴ. Discussions

Ⅵ. Concluding Remarks

Acknowledgement

References

Appendix

저자소개

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-017764957