메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국경영과학회 경영과학 경영과학 제22권 제1호
발행연도
2005.5
수록면
15 - 26 (12page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (3)

초록· 키워드

오류제보하기
The bootstrap is a method of computational inference that simulates the creation of new data by resampling from a single data set. We propose a new job for the bootstrap: generating inputs from one historical trace using Threshold Bootstrap. In this regard, the most important quality of bootstrap samples is that they be functionally indistinguishable from independent samples of the same stochastic process.
We describe a quantitative measure of difference between two time series, and demonstrate the sensitivity of this measure for discriminating between two data generating processes. Utilizing this distance measure for the task of generating inputs, we show a way of tuning the bootstrap using a single observed trace.
This application of the threshold bootstrap will be a powerful tool for Monte Carlo simulation. Monte Carlo simulation analysis relies on built-in input generators. These generators make unrealistic assumptions about independence and marginal distributions. The alternative source of inputs, historical trace data, though realistic by definition, provides only a single input stream for simulation. One benefit of our method would be expanding the number of inputs achieving reality by driving system models with actual historical input series. Another benefit might be the automatic generation of lifelike scenarios for the field of finance.

목차

Abstract

1. 서 론

2. 관련 연구

3. 부트스트랩 표본 시계열의 검정

4. 결 론

참고문헌

부 록

참고문헌 (21)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-325-015230629