메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국통신학회 한국통신학회논문지 한국통신학회논문지 제29권 5C호
발행연도
2004.5
수록면
700 - 705 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Autoencoder와 Fuzzy c-Means 알고리즘을 이용하여, 불완전한 데이터의 군집화를 위한 알고리즘이 본 논문에서 제안되었다. 본 논문에서 제안된 Optimal Completion Autoencoder Fuzzy c-Means (OCAEFCM)은 손상되어 불완전한 데이터의 최적 복원과 데이터의 군집화를 위해 Autoencoder Neural Network (AENN) 과 Gradient-based FCM (GBFCM)을 이용하였다. OCAEFCM 의 성능평가를 위해 IRIS 데이터와 금융기관에서 취득한 실제 데이터를 사용하였다 기존의 Optimal Completion Strategy FCM (OCSFCM)과 비교했을 때, 제안된 OCAEFCM 이 OCSFCM 보다 18%~20%의 성능 향상을 보여준다.

목차

요약

ABSTRACT

Ⅰ.서론

Ⅱ.기존의 알고리즘

Ⅲ.제안된 알고리즘

Ⅳ.실험 및 결과

Ⅴ.결론

참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-567-014018645