메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
양석환 (부경대학교) 정목동 (부경대학교)
저널정보
한국멀티미디어학회 멀티미디어학회논문지 멀티미디어학회논문지 제16권 제7호
발행연도
2013.7
수록면
810 - 819 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
FCM 클러스터링 알고리즘은 대표적인 분할기반 군집화 알고리즘이며 다양한 분야에서 성공적으로 적용되어 왔다. 그러나 FCM 클러스터링 알고리즘은 잡음 및 지역 데이터에 대한 높은 민감도, 직관적인 결과와 상이한 결과 도출 가능성이 높은 문제, 초기 원형과 클러스터 개수 설정 문제 등이 존재한다. 본 논문에서는 FCM 알고리즘의 결과를 해당 속성의 데이터 축에 사상하여 퍼지구간을 결정하고, 결정된 퍼지구간을 FDT에 적용함으로써 FCM 알고리즘이 가지는 문제 중 잡음 및 데이터에 대한 높은 민감도, 직관적인 결과와 상이한 결과 도출 가능성이 높은 문제를 개선하는 시스템을 제안한다. 또한 실제 교통데이터와 강수량 데이터를 이용한 실험을 통하여 제안 모델과 FCM 클러스터링 알고리즘을 비교한다. 실험 결과를 통해 제안 모델은 잡음 및 데이터에 대한 민감도를 완화시킴으로써 보다 안정적인 결과를 제공하며, FCM 클러스터링 알고리즘을 적용한 시스템보다 직관적인 결과와의 일치율을 높여줌을 알 수 있다.

목차

요약
ABSTRACT
1. 서론
2. 관련 연구 및 배경 이론
3. FCM 클러스터링 알고리즘과 FDT를 이용한 분류 알고리즘
4. 제안모델을 이용한 상황인식 서비스 모델
5. 구현 및 평가
6. 결론 및 향후계획
참고문헌

참고문헌 (3)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2014-000-002409020