메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국통신학회 한국통신학회논문지 한국통신학회논문지 제29권 5C호
발행연도
2004.5
수록면
627 - 631 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
음성인식 모델상의 GPDFs(Gaussian Probability Density Functions)을 효율적으로 군집화할 수 있는 알고리즘이 제안되었다. 제안된 알고리즘은 데이터 시이의 거리 척도로 발산 거리를 사용하는 새로운 형태의 CNN(Centroid Neural Network)으로, 제한된 자원을 가지는 H/W환경의 음성인식에서 메모리 사용량을 축소하는 응용에 대한 실험 결과, 음성인식 모델인 CDHMM(Continuous Density Hidden Markov Model)에서 기존의 Dk-means(Divergence0based k-means)알고리즘을 이용한 방법과 비교하여 인식 성능의 유지와 함께 약 31.3%의 GPDFs를 더 축소할 수 있었고, 군집화 알고리즘을 적용하지 않은 전체 GPDFs를 사용한 경우와 비교해서 인식 성능의 유지와 함께 약 61.8%의 GPDFs를 압축할 수 있었으며, SNR 10dB 잡음 데이터에 대한 성능평가에서도 인식 성능이 유지될 수 있었다.

목차

요약

ABSTRACT

Ⅰ.서론

Ⅱ.GPDFs와 발산 거리 척도

Ⅲ.발산척도기반의 CNN

Ⅳ.실험과 결과

Ⅴ.결론

참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-567-014018569