메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한전자공학회 전자공학회논문지-CI 전자공학회논문지 CI편 제41권 제3호
발행연도
2004.5
수록면
67 - 77 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
최근 잡음환경에서 신뢰도 높은 음성인식을 위해 음성정보와 영상정보를 융합하는 방법이 활발히 연구되고 있다. 본 논문에서는 이질적인 정보의 융합에 적합한 신경망 모델을 기반으로 음성, 영상 및 문맥 정보 등 다양한 정보를 융합하여 잡음 환경에서 고립단어를 인식하는 음성인식 기법에 대하여 기술한다. 음성과 영상 특정을 이용한 이중 모드 신경망 BMNN(BiModal Neural Network)을 제안한다. BMNN은 4 개 층으로 이루어진 다층퍼셉트론의 구조를 가지며 각 층은 입력 특징의 추상화 기능을 수행한다. BMNN 에서는 제 3층이 잡음에 의한 음성 정보의 손실을 보상하기 위하여 음성과 영상 특정을 통합하는 기능을 수행한다. 또한, 잡음환경에서 음성 인식률을 향상시키기 위해 사용자가 말한 단어들의 순차 패턴을 나타내는 문맥정보를 이용한 후처리 방법을 제안한다. 잡음환경에서 BMNN은 단순히 음성만을 사용한 것 보다 높은 성능을 보임으로써 그 타당성을 확인할 수 있을 뿐 아니라, 특히 문맥을 이용한 후처리를 하였을 경우 잡음 환경에서 90% 이상의 인식률을 달성하였다. 본 연구는 잡음환경에서 강인한 음성인식을 위해 다양한 추가 정보를 사용함으로써 성능을 향상시킬 수 있음을 제시한다.

목차

요약

Abstract

1.서론

2.음성과 영상 특징 추출

3.BMNN(BiModal Meural Metwork

4.문맥정보를 이용한 후처리 방법

5.실험

5.결론 및 향후 연구

참고문헌

저자소개

참고문헌 (13)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-014015104