메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국자동차공학회 한국자동차공학회논문집 한국자동차공학회논문집 제10권 제5호
발행연도
2002.9
수록면
147 - 159 (13page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This paper proposes a method to recognize the noisiness of road images connected with the extraction of lane-related information in order to prevent the usage of erroneous information. The proposed method uses a fuzzy neural network(FNN) with the back-propagation learning algorithm. The FNN decides road images good or bad with respect to visibility of lane marks on road images. Most input parameters to the FNN are extracted from an edge distribution function(EDF), a function of edge histogram constructed by edge phase and norm. The shape of the EDF is deeply correlated to the visibility of lane marks of road image. Experimental results obtained by simulations with real images taken by various lighting and weather conditions show that the proposed method was quite successful, providing decision-making of noisiness with about 99%.

목차

Abstract

1.서론

2.FNN

3.FNN의 입력데이터 추출을 위한 영상처리

4.실험결과

5.결론

후기

참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-556-013992838