메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한전자공학회 전자공학회논문지-CI 전자공학회논문지 CI편 제41권 제2호
발행연도
2004.3
수록면
65 - 76 (12page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
최근 대부분의 문서들이 전자적으로 생성되고 많은 고문서(古文書)들이 이미지 형태로 전자화되고 있다. 이미지 형태의 전자 문서들은 정보 추출과 데이터베이스화에 많은 어려움이 있기 때문에, 이러한 문서를 효율적으로 관리하고 검색하기 위한 문서구조분석 방법과 문자 인식을 위한 많은 연구가 필요하다. 본 논문은 폰트의 구분 특성(font discrimination features)들이 폰트이미지의 공간적으로 지역적인 특정들에 기반함을 가정한 방법으로써, 객체의 부분기반 표현들을 학습할 수 있는 NMF(non-negative matrix factorization) 알고리즘을 사용하여 폰트를 자동으로 분류하는 방법이다. 제안된 방법은 부분기반의 비지도 학습 방법(part-based unsupervised learning technique)을 이용하여 전체의 폰트 이미지들로부터 각 폰트들의 구분 특징인 부분을 학습하고, 학습된 부분들을 특징으로 사용하여 폰트를 분류하는 방법이다. 실험결과에서 폰트 이미지들의 공간적으로 국부적인 특정들이 조사되고, 그 특징들이 폰트의 식별을 위한 적절성을 보인다. 제안된 방법이 기존의 문자인식, 문서 검색 시스템들의 전처리기로 사용되면, 그 시스템들의 성능을 향상시킬 것으로 기대된다.

목차

요약

Abstract

1. 서론

2. NMF 알고리즘

3. 제안된 폰트 분류 방법

4. 실험 결과

5. 결론

참고문헌

저자소개

참고문헌 (17)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-013797985