메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학위논문
저자정보

곽봉우 (충남대학교, 충남대학교 대학원)

지도교수
김종훈
발행연도
2023
저작권
충남대학교 논문은 저작권에 의해 보호받습니다.

이용수23

표지
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (3)

초록· 키워드

오류제보하기
Recently, regulations on environmental pollution, such as those related fuel economy and exhaust gas emissions, have been strengthened in developed countries. As the demand to reduce carbon emissions increases, interest in electric vehicles and related markets has also increased. In addition, with the advances in battery technology, battery capacity has significantly improved, thus enhancing both stability and mileage. Therefore, for efficient use of batteries in electric vehicles, research on various power scenarios of V2x, such as V2G, V2L, and V2H, is being actively conducted in contrast to the more common scenario of driving by means of regular vehicle charging.
For V2x implementation, bi-directional on-board chargers (OBCs) are essential. In particular, bidirectional DC/DC converters that directly control batteries have various topologies, and isolated converters are widely used for system safety. High efficiency and power density are essential for limited space in OBCs. In power conversion systems, efficiency and power density are in a physical trade-off relationship, but the recent development of wide-bandgap (WBG) -based power semiconductor devices can simultaneously improve the efficiency and power density of power conversion systems.
Accordingly, this study applies a cascode gallium nitride (GaN) field-effect transistor (FET), which is a representative WBG device, to a dual active bridge (DAB) converter for V2x.
First, the structure and operating characteristics of a 6.6-kW class DAB converter are analyzed. The specifications of the cascode GaN FET are derived by determining the target efficiency from the zero-voltage switching (ZVS) region based on the input/output voltage ratio, the actual ZVS region based on the parasitic components of the existing silicon-based power semiconductor device, and the cascode GaN FET. The cascode GaN FET-based 6.6-kW DAB converter is then designed considering the output specifications of the OBC.
Next, the method of increasing the reliability of the DAB converter using the cascode GaN FET is proposed. Gate oscillation occurs under fast dv/dt due to the high-speed switching characteristics of the cascode GaN FET. Therefore, a study on resistor-capacitor (RC) snubber design using the root locus method is conducted to suppress this. In addition, the cascode GaN FET can be easily damaged by overcurrent due to its low ruggedness, and soft start technology is essential to suppress this. Soft-start control technology is proposed to suppress the initial large inrush current generated for charging the link capacitor when the DAB converter operates in discharge modes such as V2H and V2L.
Finally, the 6.6-kW DAB converter is fabricated and verified through a load test using the proposed techniques. Application of the cascode GaN FET to the DAB converter shows an efficiency improvement of approximately 5% or more by achieving a faster ZVS under light load conditions as compared with SJ-MOSFET (Si). Higher efficiency than that of silicon semiconductors can be achieved due to low turn-off loss, even under a rated load. Finally, differences in efficiency are observed based on whether ZVS is achieved under light load conditions based on the voltage ratio. However, a maximum efficiency of 98% and an efficiency of more than 96% at a rated output are achieved. Based on these results, the feasibility of applying cascode GaN FETs to DAB converters is confirmed.

목차

제 1 장 서 론 1
1.1 연구 배경 1
1.2 고효율 WBG 전력반도체소자 분석 9
1.3 GaN FET 기반 V2x 대응 On-board charger 17
1.3.1 GaN FET 기반 OBC 구조 분석 17
1.3.2 GaN FET 기반 양방향 DC-DC 컨버터 18
1.4 연구 목적 및 방법 27
1.5 논문 구성 29
제 2 장 Dual Active Bridge 컨버터 토폴로지 30
2.1 DAB 컨버터 구조 및 동작 특성 30
2.2 DAB 컨버터의 ZVS 특성 분석 40
제 3 장 Cascode GaN FET 적용 DAB 컨버터 설계 47
3.1 6.6kW급 DAB 컨버터 시스템 사양 47
3.2 6.6kW급 DAB 컨버터 설계 50
3.2.1 고주파 변압기 권선 비 설계 50
3.2.2 직렬 인덕턴스 설계 52
3.2.3 직류 단 커패시턴스 설계 54
3.2.4 DAB 컨버터 손실 모델 55
3.2.5 Cascode GaN FET의 오실레이션 저감을 위한 RC 스너버 회로 설계 63
제 4 장 DAB 컨버터용 디지털 제어기 75
4.1 DAB 컨버터 제어용 디지털 제어기 설계 75
4.1.1 DAB 컨버터의 소신호 모델 75
4.1.2 DAB 컨버터 제어기 설계 82
4.1.3 소프트 스타트 제어 알고리즘 설계 86
4.1.4 DSP기반 디지털 제어기 구현 98
4.2 PSIM을 활용한 디지털 제어기 검증 104
제 5 장 DAB 컨버터의 하드웨어 구현 및 실험 107
5.1 Cascode GaN FET 적용 DAB 컨버터 하드웨어 제작 107
5.1.1 게이트 구동 안정화 실험 및 분석 107
5.1.2 DAB 컨버터 하드웨어 제작 113
5.2 Cascode GaN FET 기반 DAB 컨버터 실험 117
5.2.1 DAB 컨버터의 충전 모드 실험 117
5.2.2 DAB 컨버터의 방전 모드 실험 122
5.2.3 SJ MOSFET이 적용된 DAB 컨버터와 비교 실험 133
제 6 장 결 론 138
참고 문헌 140
Abstract 156

최근 본 자료

전체보기

댓글(0)

0