메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학위논문
저자정보

백영곤 (동의대학교, 동의대학교 대학원)

지도교수
박영도
발행연도
2023
저작권
동의대학교 논문은 저작권에 의해 보호받습니다.

이용수5

표지
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
최근 자동차 산업에서는 CO2 배출 저감 및 국제 환경 규제가 강화 됨에 따라
차체 경량화를 통한 자동차 연비 증가에 초점을 맞추고 있는 실정이다. 자동차
업계는 연비 증가를 위한 차체 경량화를 만족시킴과 동시에 탑승자의 안전 또한
확보할 수 있는 방안으로 차체에 초고장력강 (UHSS, Ultra High Strength
Steel)을 적용하는 방법을 사용하고 있다.
자동차 차체 생산 라인에서 사용되는 대표적인 초고장력강은 1.5GPa 이상의 핫
스탬핑강 (Hot stamping steel)이 적용되지만, 핫 스탬핑 강 저항 점 용접 시
용접부 표면에 내부의 용융 너겟이 표면을 관통하여 생성되는 표면 날림 현상
(일명 쇄가시)이 실 차체 부품의 저항 점 용접부에서 많이 관찰되고 있다. 이러한
표면 날림 발생은 용접부 표면 외관 품질 불량 및 표면 날림 제거를 위한 2 차
추가공정 등의 문제를 일으켜 표면 날림 발생 억제 방안에 대한 연구가 시급한
실정이다. 점 용접부 표면 날림의 원인으로 핫 스탬핑강 Al-Si 합금화층에 기인한
용접 중의 높은 표면 발열, 전극과 판재 간의 전극 오정렬에 기인한 전극 미접촉
부 냉각성능 저하 및 편방향 너겟 성장, 분류 (Shounting) 현상의 전극 끝단 전류
밀도 집적에 기인한 표면 발열 등의 보고에 따르면 도금층의 물성 및 점 용접 공정
각각 또는 복합적인 원인들이 표면 날림 발생 요소들로 작용하고 있는 것으로
사료된다. 그러나 개별 현상에 대한 심도 있는 표면 날림의 메커니즘 연구와 더불어
억제 방안에 대한 보고는 제한적이다.
따라서 본 연구에서는 표면 날림이 발생하는 원인 중 전극 오정렬에 기인한 표면
날림 메커니즘을 오정렬 정도의 변화에 따른 Thermal Monitoring 과 용접부
단면분석 및 표면 날림 현상 분석을 통해 고찰하였으며 이 메커니즘을 활용하여
Up-slope 방식의 전류 프로파일을 적용한 표면 날림 억제 방안을 연구하였다.
Thermal monitoring 을 통해 표면 날림 발생 현상을 관찰한 결과 전극 오정렬
정도 증가에 따른 전극 미접촉부 및 전극 끝단의 표면 발열 온도는 용접 중 더
장시간 고온을 유지함을 확인하였고, 전극 오정렬 정도 증가에 따른 용융 너겟의
편방향 성장 거동과 이 편방향 용융 너겟의 표면 관통 유무에 따라 표면 날림의
종류가 비관통형 및 관통형 표면 날림으로 분류됨을 확인하였다. 또한 표면 날림의
종류는 전극 오정렬 정도 증가에 따라 비관통형에서 관통형으로 변함과 동시에
표면 날림 비산거리 및 비산 부피 또한 상승하는 결과를 확인하였다. 이를 통해
전극 오정렬에 기인한 표면 날림 현상은 전극 미접촉부의 냉각성능 저하에 따른
고온의 표면 발열 및 편방향 너겟 성장 거동이 상관관계에 따라 이뤄지는
메커니즘임을 도출하였다. 또한 이 메커니즘을 기반으로 Up-slope 전류 프로파일
방식을 적용한 표면 날림 억제 실험을 설계하여 Up-slope 방식을 통해 표면 날림
억제가 가능하다는 것을 증명하였다. 연구 결과 최적 Up-slope 시간은 2°, 4°,
6° 전극 오정렬 각도 별로 각각 100, 167, 200ms 라는 것을 확인하였다.

목차

Ⅰ. 서 론 ·····················································································································1
1.1 서론 ··························································································1
Ⅱ. 이론적 배경 ····························································4
2.1 자동차 차체 적용 강판의 개발 및 적용 현황··························································································4
2.2 Resistance Spot Welding (RSW)의 개요 ··························································································6
2.3 저항 점 용접 시 전극 오정렬의 영향 ··························································································10
2.4 핫 스탬핑 강 (Hot Stamping Steel)의 저항 점 용접 ····················13
Ⅲ. 실험 방법 ····························································15
3.1 표면날림 발생 거동 분석 실험 ·······························································15
3.1.1) 실험 소재 및 공정 조건 ··························································································15
3.1.2) 전극 오정렬 각도에 따른 용접 조건 ····················································································18
3.1.3) 구간 용접 시험 (Interrupted Test) 용접 조건 ··························································································20
3.1.4) 표면 날림 측정 및 발생 원인 분석 ····················································································22
3.2 표면날림 억제 기술 개발 ·······························································24
3.2.1) Up-Slope 전류 프로파일 적용 실험 ··························································································24
Ⅳ. 결과 ····························································26
4.1 표면날림 발생 거동 분석 실험 ·······························································26
4.1.1) 표면 날림의 종류 ··························································································26
4.1.2) 전극 오정렬 각도에 따른 표면날림 현상 변화 ····················································································30
4.1.3) 구간 용접 시험 (Interrupted Welding Test)을 통한 표면날림 거동 변화 ··············34
4.2 Up-Slope 전류 프로파일 적용 표면날림 억제 실험 ·······························································40
Ⅴ. 고찰 ··················································································································44
5.1 시뮬레이션 (Simufact) 적용 전극 오정렬에 기인한 표면날림 발생 메커니즘 증명············44
5.1.1) 시뮬레이션 단면 분석을 통한 표면날림 메커니즘 증명 ···································45
5.1.2) 시뮬레이션 표면 발열 및 전극 접촉 변화 분석을 통한 표면날림 발생 메커니즘 증명 ·····················48
5.2 Thermal Monitoring 적용 전극 오정렬에 기인한 표면날림 발생 메커니즘 증명 ··········53
5.3 시뮬레이션 (Simufact)을 활용한 Up-Slope 전류 프로파일 적용 표면날림 억제 메커니즘 분석 ·········56
5.3.1) 시뮬레이션 단면 분석을 통한 Up-Slope의 표면 날림 억제 메커니즘 증명 ···········57
5.3.2) 시뮬레이션 표면 발열 및 전극 접촉 변화 분석을 통한 Up-Slope의 표면날림 억제 메커니즘 증명 ······59
Ⅵ. 결 론 ··················································································································63
참고 문헌 ························································································································65
Abstract ··············································································································68
감사의 글 ···············································································································71

최근 본 자료

전체보기

댓글(0)

0