메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학위논문
저자정보

최문석 (서울대학교, 서울대학교 대학원)

지도교수
이덕주
발행연도
2021
저작권
서울대학교 논문은 저작권에 의해 보호받습니다.

이용수2

표지
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
기계학습이 현재 이론과 실생활 적용 모두에서 발전함에 따라 데이터는 인공지능 모델을 훈련하고 검증하는 데 중요한 역할을 하고 있다. 한편, 데이터 교환 시장에서 데이터의 경제성 평가에 대한 연구는 초기 단계이다. 본 논문의 기여는 두 가지 관점에서 접근할 수 있다. 첫째, 협동 게임 이론의 개념인 semi-value를 모델 수익 분배 문제에 활용한다. 둘째, 인공지능 모델의 공정성과 개인정보보호성을 고려한 데이터 제공자, 기업, 시장으로 구성된 모델을 제안한다. 본 연구에서 Banzhaf 값은 각 데이터의 기여도를 계산할 때 Shapley 값의 대안이 될 수 있음을 확인하였다. 또한 회사의 수익 극대화 문제를 모델링하였고, 추가적으로 데이터 예제를 사용하여 이진 분류 모델의 경우 수치 분석을 제시하였다. 이를 통해, Banzhaf 값은 Shapley 값보다 데이터의 공정성에 더 민감하다는 것을 확인하였다. 나아가 기업이 고품질 데이터만을 사용한다는 가정하에 데이터의 공정성과 데이터 제공자의 개인정보에 대한 보상비용을 달리하는 네 가지 시나리오에서 기업의 행동을 분석하였다. 기업은 데이터가 공정할수록 데이터 제공자에게 더 큰 수익을 보장해주었고, 고정비용이 작아질수록 가변비용을 통해서 데이터 제공자에게 수익을 나눠주는 것을 확인하였다.

목차

Chapter 1 Introduction 1
1.1 Research Background 1
1.2 Problem Description 2
1.3 Organization of the Thesis 3
Chapter 2 Literature Review 4
2.1 Fair Machine Learning 4
2.2 Private Machine Learning 5
2.3 Data Valuation 6
2.3.1 Dataset Price Estimation 6
2.3.2 Equitable Price Estimation 7
Chapter 3 Data Market Model 8
3.1 Basic Assumptions and Model Settings 8
3.2 Firm’s Profit Maximizing Problem 10
3.3 Data Valuation 12
3.4 Binary Classification Setting 14
Chapter 4 Analysis 17
4.1 Semi-value Approximation 17
4.1.1 Convergence Analysis 17
4.1.2 Group Data Calculation 20
4.2 Binary Classification 22
4.2.1 Parameter Analysis 22
4.2.2 Scenario Analysis 24
4.2.2.1 Description 24
4.2.2.2 Synthetic Data 25
4.2.2.3 Shapley Value Based Valuation 26
4.2.2.4 Banzhaf Value Based Valuation 28
4.2.2.5 Comparative Analysis 30
4.3 Data Pricing 33
Chapter 5 Conclusion 35
Bibliography 38
국문초록 43

최근 본 자료

전체보기

댓글(0)

0