나리 구근의 수확시기와 저온저장기간에 따라 형태적 특성 및 내부 구성물질의 변화는 구근 품질에 영향을 준다. 이 연구는 구근 수확시기와 저온저장 기간이 오리엔탈 나리 구근의 shoot 크기와 당과 호르몬 함량, 그리고 식재 후 식물생육에 미치는 영향을 구명하였다. 이 연구는 1차와 2차 실험으로 나뉘어 진행되었다. 1차 실험은 충남 태안에서 2011년 9월부터 11월까지 절화용 오리엔탈나리 ‘Siberia’와 ‘Sorbonne’ 구근을 1주일 간격으로 수확하여 형태적 특성(구주, 구경, 구고, 구중, shoot 길이, shoot 폭)과 총당 및 유리당 함량을 측정하였다. 그 결과, 구중은 ‘Siberia’는 10월 중순까지 증가한 후 감소하였고, ‘Sorbonne’는 11월 초까지 증가한 후 감소하였다. Shoot 크기는 품종에 관계없이 수확시기가 늦어질수록 증가하였다. 총당과 sucrose 함량은 11월초까지 증가하였는데 이는 지속적인 광합성 산물의 이동 및 축적과 관련이 있는 것으로 보인다. 저온저장 기간과 구근 특성의 관계에 있어서는, 저온저장 기간이 길어질수록 품종에 관계없이 shoot가 커졌다. 저온저장 기간 동안 fructose와 glucose는 3월말까지 감소하다가 그 후 증가한 반면, sucrose는 단당류의 증가 시기에 감소하였다. 총당 함량은 일정 수준을 유지하였다. 2차 수확시기실험은 충남 태안에서 ‘Le Reve’, ‘Sorbonne’, ‘Siberia’ 구근을 2012년 8월초부터 11월까지 2주 간격으로 수확하여 형태적 특성과 총당 함량, 호르몬 함량을 측정하였다. 이후 구근을 4°C에 저온저장한 후 2월말 온실에 식재하여 출현한 식물체의 개화 시 초장, 엽수, 엽면적, 생체중, 건물중, 개화일, 개화율, 화뢰수 등을 생육특성을 조사하였다. 그 결과, shoot 크기는 품종에 관계없이 수확시기가 늦어질수록 증가하였다. 총당 함량은 수확시기가 7월 중순에서 11월말까지 늦어지면서 ‘Le Reve’는 1.8배, ‘Sorbonne’는 2.2배, ‘Siberia’는 1.8배 정도 증가하였다. 호르몬 함량의 경우 수확시기가 늦어질수록 나리 구근 내 ABA와 JA의 함량은 감소하는 경향이 있었다. 생육 특성 역시 구근 수확시기의 영향을 받았는데, 초장은 7월 중순부터 11월말까지 수확시기가 늦어졌을 때 ‘Le Reve’, ‘Sorbonne’, ‘Siberia’는 각각 약 1.5배, 2.6배, 3.0배 증가하였다. 지상부 생체중 및 건물중은 ‘Le Reve’, ‘Sorbonne’, ‘Siberia’ 순으로 각각 10월초, 9월말, 11월초 이후 수확한 구근으로부터 출현한 식물체의 값이 월등히 높았다. 전개엽수, 엽면적 또한 수확시기가 늦어질수록 증가하였다. 또 총당값이 증가하면 건물중값도 증가하는 상관관계를 보았을 때 구근내 총당함량은 식재 후 생육상태에 영향을 미치는 것을 알 수 있다. 반면, 개화소요일수는 수확시기가 늦어질수록 늘어났다. 이상의 결과를 종합해 볼 때, 구근 수확시기가 늦어질수록 포장에서 광합성을 통해 탄수화물을 축적할 시간이 늘어나 구근 내 총당 함량과 shoot 크기가 증가하며, 이는 식물체의 영양생장 및 생식생장을 충실하게 하여 품질을 향상시켰다고 볼 수 있다. 2차 저장시기 실험의 식물재료는 2차 수확시기 실험과 같은 오리엔탈나리 ‘Le Reve’, ‘Sorbonne’, ‘Siberia’ 이며, 2012년 11월 말 필요한 수량을 일시에 수확하여 형태적 특성과 총당 함량, 호르몬 함량을 측정하였다. 이후 구근을 4°C에 30일 예냉하였고, 0°C에서 30일~120일까지 둔 후 12°C에 2주 순화하여 식재하였다. 온실에 식재하여 출현한 식물체의 개화 시 초장, 엽수, 엽면적, 생체중, 건물중, 개화일, 개화율, 화뢰수 등을 생육특성을 조사하였다. 그 결과, shoot 크기는 품종에 관계없이 저온저장기간이 길어질수록 증가하였다. 구근의 glucose와 fructose함량은 저장기간이 길어질수록 수치가 높아졌고, sucrose함량은 반대의 경향을 나타냈다. 총당 함량은 저장기간 초기에 증가하다가 저장 후 어느 정도 유지되는 모습을 보였다. 저장기간이 늦어질수록 나리 구근 내 ABA 함량은 감소하고, JA의 함량은 증가하는 경향을 보였다. 생육 특성 역시 구근 저장기간의 영향을 받았는데, 나리구근의 저온저장기간이 길어질수록 ‘Sorbonne’, ‘Siberia’의 초장은 각각 14%, 19% 감소 하여, 식재 이후의 생육에서 그 초장이 짧아지는 것을 볼 수 있었다. 지상부 생체중은 ‘Sorbonne’, ‘Siberia’ 순으로 각각 저장 40일, 저장 30일에 최대값을 나타냈고, 저장기간이 길어지면서 생체중이 감소하였다. ‘Le Reve’의 생체중은 경향을 보이지 않았다. 전개엽수, 엽면적 및 엽록소 함량은 저장기간에 따른 차이를 확인하지 못했다. 화뢰수와 화색은 저장기간에 따른 차이는 없었으나, 화경의 경우 품종에 따라 차이는 있었으나 저장기간이 길어질수록 화경이 줄어들었다. 세 품종의 저장기간은 실험조건이 위와 같을 때 ‘Le Reve’는 60일, ‘Sorbonne’와 ‘Siberia’는 80-90일이 적합하다고 판단된다.
Morphological characteristics and constituents in Lilium bulbs change by the harvest time and storage duration and these changes can affect bulb quality at harvest or at successive growth. This study was carried out to examine the impacts of different harvest times and storage duration on the shoot size, carbohydrate contents, hormone contents, and plant growth after planting of bulbs of Lilium Oriental hybrids ‘Le Reve’, ‘Sorbonne’ and ‘Siberia’, in order to obtain. basic data for bulb quality management. This study was consisted of two parts, the first and second experiments. In the first experiments, the harvest time and storage duration of bulbs were studied. The bulbs were harvested weekly from September to November, 2011 in a field at Taean-gun, Chungcheongnam-do, Korea. For the storage duration study, bulbs were harvested at late November in the same field and stored at 0 °C condition. The bulbs were tested for morphological characteristics and total and free sugar contents. In the second experiments, bulbs were harvested every two weeks from August to November, 2012 for the harvest time study. For the cold storage duration study, bulbs were harvested late November and stored at 0 °C condition. Bulbs were tested for the same morphological characteristics, total and free sugar contents as in the first experiment. Additional tests on hormones contents and plant growth after planting the bulbs were carried out. In the first experiment, bulb weight was increased as time passed until mid-October and then decreased due to a reduction of moisture content in bulbs. Regardless of cultivars, internal shoot size was increased with delayed harvest time. Total sugar and sucrose contents were increased as harvest time passed until early November, due to continuous translocation and accumulation of photosynthesis. In the storage duration study, shoot size within bulb was increased with extending cold storage time in both cultivars. During the storage period, monosaccharides, fructose, and glucose were decreased until the end of March and then were increased, but sucrose showed a reverse trend. Consequently, total sugar content was maintained unchanged during the cold storage. Changes in carbohydrates content were considered to be related to the activity of enzymes involved in carbohydrate metabolism and were thought to affect shoot growth in the lily bulbs. In the second experiment, shoot size was increased with delayed harvest time. Total sugar contents were increased as the harvest time was passed to late November, due to continuous translocation and accumulation of photosynthesis. Abscisic acid (ABA) and jasmonic acid (JA) contents in lily bulbs were decreased with delayed harvest time. When the harvest time was delayed from August to November, plant heights of ‘Le Reve’, ‘Sorbonne’ and ‘Siberia’ was increased 1.5, 2.6, and 3.0 fold, respectively. Fresh and dry weight of cut flower ‘Le Reve’, ‘Sorbonne’ and ‘Siberia’ were greatest in bulbs harvested at early October, late September, early November, respectively. Leaf number and area were increased with delayed harvest time. As total sugar contents in bulbs increased, dry weight of cut flower also increased. This correlation might indicate that the total sugars in bulbs promoted successive plant growth after planting. However, days to flower increased with delaying harvest time. These results indicated that as the harvest time was delayed, more carbohydrate accumulation in the lily bulb was occurred through extended photosynthesis time in the field. Due to the increased total sugar contents and shoot size in the bulb, the better vegetative and generative growth could be achieved, when the improved quality bulbs were planted. Internal shoot size increased with increasing cold storage duration. Glucose and fructose contents increased, but sucrose contents decreased with increasing cold storage time. Total sugar contents increased with increasing cold storage period in bulbs stored during relatively shorter period and were maintained at a certain level in those stored during longer period. ABA contents in lily bulbs were decreased but JA contents were increased with extending cold storage. Plant height of cut flower ‘Sorbonne’ and ‘Siberia’ were decreased by 14% and 19%, respectively. Dry weights of cut flower in ‘Sorbonne’ and ‘Siberia’ were greatest at 40 days and 30 days of storage period, respectively. When storage period was extended, dry weight was decreased. There was no significant change in leaf number, leaf area, and chlorophyll content. Flower diameter decreased with extending cold storage. These results indicated that the optimal storage periods of ‘Le Reve’, ‘Sorbonne’ and ‘Siberia’ were 60, 80-90 and 80-90 days, respectively.
목차
Ⅰ. 서언 ·········································································· 1Ⅱ. 연구사 ······································································· 4Ⅲ. 재료 및 방법3.1. 식물재료······························································· 93.2. 형태적 특성 조사···················································103.3. 총당 및 유리당 정량···············································123.4. 내생 호르몬 추출 및 분석·······································133.5. 재배 환경 및 생육 특성 측정···································14Ⅳ. 결과 및 고찰4.1. 구근 수확시기에 따른 구근 및 절화의 품질 변화4.1.1. 구근의 형태적 특성 ·········································174.1.2. 구근의 내생물질 함량 ······································244.1.3. 식물체 생육 및 절화의 품질 특성 ·····················344.2. 구근 저장기간에 따른 구근 및 절화의 품질 변화4.2.1. 구근의 형태적 특성 ·········································424.2.2. 구근의 내생물질 함량 ······································454.2.3. 식물체 생육 및 절화의 품질 특성 ·····················53Ⅴ. 결론 ·········································································67요약 ···············································································77Summary ······································································80