메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학위논문
저자정보

김남호 (한경대학교, 韓京大學校)

발행연도
2013
저작권
한경대학교 논문은 저작권에 의해 보호받습니다.

이용수0

표지
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
A newly developed fall recognition system using the HMM
(Hidden Markov Model) with 3-axis accelerometer and video for the
elderly or patients is proposed. For this fall recognition system, a
new method for extracting fall feature parameters from 3-axis
acceleration and video is proposed. To distinguish between fall and
normal activities of daily living (ADL), the fall feature parameters
are applied to HMM.
To solve the problems such as deviation of interpersonal falling
behavioral patterns and similar fall actions, the proposed
HMMtraining method is used. The results which apply the
previously used parameters and newly developed parameters to the
HMM are compared and analyzed.
Compared to the conventional parameter SVM (Sum Vector
Magnitude) ASVM., the newly defined parameter GSVM (Gravity
weighted Sum Vector Magnitude) AGSVM of 3-axis accelerator gets
the best result to detect a fall. The results show that AGSVM can
distinguish various types of fall from ADLs with 100% sensitivity
and 97.96% specificity. Sensitivity and specificity of AGSVM are
improved to more 6% and 4% than those of ASVM, respectively.
In video field, to extract fall feature parameters from video, PCA
(Principal Component Analysis) of optical flow is used. As in case
of 3-axis acceleration data, the newly developed parameters applied
to the HMM are compared and analyzed. These fall feature
parameters used as HMM input data. The angle parameter V?(t)
among various fall feature parameters is best. The results show
that V?(t) can distinguish various types of fall from ADLs with
sensitivity of 91.5% and specificity of 88.01%.

목차

등록된 정보가 없습니다.

최근 본 자료

전체보기

댓글(0)

0