메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김남호 (동양미래대학교) 유윤섭 (한경대학교)
저널정보
대한전자공학회 전자공학회논문지 전자공학회논문지 제50권 8호
발행연도
2013.8
수록면
232 - 237 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
동영상에서 추출한 변수값을 은닉 마르코프 모델(Hidden Markov Model; HMM)에 적용한 새로운 낙상 인식 알고리듬을 제안한다. 개인간 낙상 양식의 차이나 유사 낙상을 실제 낙상과 구분하기 위한 기계 학습 방법으로 HMM알고리듬을 사용하였다. 비디오의 낙상 특징 변수를 얻기 위해 동영상의 광류를 구한 후 이를 주성분 분석 방식에 적용하여 움직임을 정량화하였다. 주성분 분석으로 얻어진 전체 움직임 벡터의 각도, 장단축의 비, 속도등의 조합으로 새로운 여러 종류의 낙상 특징 변수를 정의한 후 이를 HMM에 적용하여 결과를 비교, 분석하였다. 이들 변수들 중에 각도에 의해 얻어진 변수가 가장 좋은 결과를 보여 본 실험에서 91.5%의 민감도(성공 감지율)와 88.01% 의 특이도(실패 감지율)를 나타내었다.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. 본론
Ⅲ. 낙상 인식과 실험 결과
Ⅳ. 결론
REFERENCES

참고문헌 (11)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2014-560-002847770