메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학위논문
저자정보

김민호 (충북대학교, 충북대학교 대학원)

지도교수
정세웅.
발행연도
2013
저작권
충북대학교 논문은 저작권에 의해 보호받습니다.

이용수1

표지
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
In Korea, a Total Maximum Daily Load(TMDL) management policy has been enforced since 2004 to improve river water quality. This policy requires pollutant load assessment from both point and nonpoint sources from watershed to meet water quality target at control points in rivers. Because the control of nonpoint source pollutants are realized as a critical part of TMDL, distributed watershed models(i.e., SWAT, HSPF, SWMM) are increasingly being used to support the TMDL implementation and find alternative watershed management strategies. However, these models demand a great amount of input data, process parameters, a proper calibration, and sometimes result in significant uncertainty in the simulation results due to lack of information. For this reason, it is important that these models need a careful calibration and uncertainty analysis to minimize the risk in decision making. To satisfy this demand, in recent years, scientists have come up with various uncertainty analysis techniques for watershed models. The objectives of this study were to evaluate three different uncertainty analysis algorithms(SUFI-2: Sequential Uncertainty Fitting-Ver.2, GLUE: Generalized Likelihood Uncertainty Estimation, ParaSol: Parameter Solution) that used to analyze sensitivity of SWAT parameters and auto-calibration in Guryangcheon watershed(172.38km2) located in Geum river basin in Korea, evaluate uncertainty on the simulations of runoff and sediment load, and suggest alternatives to reduce the uncertainty of the model. The results confirmed that the parameters which are most sensitive to runoff and sediment simulations were consistent in three algorithms although the order of importance is slightly different. In addition, there was no significant difference in the performance of auto-calibration results for runoff simulations and all algorithms shown satisfactory modeling efficiency(NSE: 0.71∼0.82, R2: 0.74∼0.83). On the other hand, sediment calibration results showed significant biases and less efficiency(NSE: 0.40∼0.52, R2: 0.40∼0.52), which is probably due to the lack of measurement data. The p-factor representing the percentage of observations covered by 95PPU(95 Percent Prediction Uncertainty) and r-factor representing the average thickness of the 95PPU band were used to assess the uncertainty. In the runoff simulations, the p-factor and r-factor values were in the range of 0.11∼0.75 and 0.07∼0.30 respectively, meanwhile the values were 0.11∼0.51 and 0.24∼7.71, respectively in sediment simulations. It is obvious that the parameter uncertainty in the sediment simulation is much grater than that in the runoff simulation. To decrease uncertainty of SWAT simulations, it is required to estimate a feasible ranges of model parameters, and obtain sufficient and reliable measurement data for the study site.

목차

Ⅰ. 서 론 1
1.1 연구배경 및 목적 1
1.2 선행연구 분석 4
1.2.1 국내연구 동향 4
1.2.2 국외연구 동향 5
Ⅱ. 연구방법 7
2.1 강우-유출 해석 7
2.1.1 유출모의 개요 8
2.1.2 유사모의 개요 20
2.2 불확실성 해석 23
2.2.1 SWAT-CUP의 개요 23
2.2.2 SUFI-2 알고리즘 25
2.2.3 GLUE 알고리즘 30
2.2.4 ParaSol 알고리즘 32
2.3 연구대상 지역 및 모형의 구성 34
2.3.1 연구대상 지역 34
2.3.2 지형자료 구축 36
2.3.3 초기조건 및 경계조건 구성 40
Ⅲ. 결과 및 고찰 42
3.1 매개변수의 민감도 분석 42
3.1.1 유출량 관련 매개변수 민감도 42
3.1.2 유사량 관련 매개변수 민감도 49
3.2 모형의 자동 검·보정 효율 및 불확실성 분석 56
3.2.1 유출량 자동 검·보정 결과 56
3.2.2 유출량 불확실성 분석 58
3.2.3 유사량 자동 검·보정 결과 58
3.2.4 유사량 불확실성 분석 61
3.3 SWAT-CUP의 적용성 평가 62
3.3.1 유출량 해석 적용성 평가 62
3.3.2 유사량 해석 적용성 평가 62
Ⅳ. 결 론 63
참 고 문 헌 67

최근 본 자료

전체보기

댓글(0)

0