메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Sabin Lee (Seoul National University of Science and Technology) Dongyub Lee (Seoul National University of Science and Technology) Kyoungwon Seo (Seoul National University of Science and Technology)
저널정보
한국HCI학회 한국HCI학회 학술대회 PROCEEDINGS OF HCI KOREA 2025 학술대회 발표 논문집
발행연도
2025.2
수록면
326 - 331 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Enhancing argumentation skills is vital for developing critical thinking, communication, and problem- solving skills. While chatbots show promise in supporting these skills, passive learning with chatbots can limit their educational effectiveness. Facilitating active learning with chatbots that promote deep cognitive engagement is essential but remains underexplored. In this study, we developed ArguePro, a Large Language Model (LLM)-based chatbot designed to foster active learning by progressively deepening students’ cognitive engagement using the ICAP framework. To assess the impact of different engagement levels (active vs. passive) with chatbots on argumentation skills, we conducted a pretest-posttest quasi-experimental study with 20 undergraduate engineering students assigned to either active or passive learning groups. Results showed that active learning with the chatbot significantly improved argumentation skills by enhancing critical thinking and perspective-taking compared to passive learning. These findings offer insights into optimizing chatbot use to maximize learning outcomes.

목차

Abstract
1. Introduction
2. Background and related work
3. Methods
4. Results
5. Discussion
6. Conclusion
Reference

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0