메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Minyoung Park (Seoul National University of Science and Technology) Kyoungwon Seo (Seoul National University of Science and Technology)
저널정보
한국HCI학회 한국HCI학회 학술대회 PROCEEDINGS OF HCI KOREA 2023 학술대회 발표 논문집
발행연도
2023.2
수록면
815 - 821 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
As the use of online learning expands, it becomes increasingly important to predict and support at-risk students early. However, it is unclear which types of online learning behaviors (i.e., passive or active) are better able to predict at-risk students. Passive behavior (e.g., homepage access) refers to basic interaction with the system, while active behavior (e.g., foruming) refers to interactions involving other users. Using Open University Learning Analytics Dataset, we compared the predictive performance of passive and active behavior data to predict at-risk students. We used a random forest classifier to classify 3,994 students into either success or at-risk. Results showed that the predictive performance of passive behavior (accuracy: 0.78, precision: 0.79, recall: 0.91) was higher than that of active behavior (accuracy: 0.75, precision: 0.77, recall: 0.87) up to 20 weeks. These findings suggest the importance of fundamental passive behavior in online learning, such as accessing a homepage, compared to auxiliary active behavior. Through passive behavior analysis, instructors can predict at-risk students and help them successfully complete online courses.

목차

Abstract
1. Introduction
2. Related works
3. Materials and methods
4. Experimental results
5. Discussion and conclusion
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0