메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Hye Jin Yoon (Pukyong National University) Un Ju Jung (Pukyong National University)
저널정보
한국영양학회 Nutrition Research and Practice Nutrition Research and Practice Vol.19 No.2
발행연도
2025.4
수록면
200 - 214 (15page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
BACKGROUND/OBJECTIVES: p-Coumaric acid (CA), a 4-hydroxycinnamic acid derivative, is widely distributed in nature and exerts various beneficial biological effects. However, the effects of CA on metabolic abnormalities triggered by excessive fructose intake, such as dyslipidemia, hyperglycemia, non-alcoholic fatty liver disease (NAFLD), and insulin resistance, have not been sufficiently investigated. Our objective was to investigate whether CA ameliorates high-fructose diet (HFrD)-induced metabolic dysregulation.
MATERIALS/METHODS: Golden Syrian hamsters were randomly assigned to 3 groups and were fed diets containing 60% cornstarch (CON group), 60% fructose (HFrD group), or 60% fructose with CA (0.02%) (HFrD+CA group) for 5 weeks.
RESULTS: HFrD feeding significantly increased the levels of plasma triglyceride, apolipoprotein (apo)-CIII, fasting blood glucose, and homeostatic model assessment insulin resistance, and tended to increase plasma total cholesterol (TC) and low-density lipoprotein/very low-density lipoprotein cholesterol (LDL/VLDL-C) compared with the CON group. In HFrD-fed hamsters, CA supplementation significantly decreased plasma TC, LDL/VLDL-C, apo-CIII, and fasting blood glucose levels. Moreover, CA significantly decreased the hepatic lipid levels and fibrosis induced by HFrD. The plasma and hepatic lipid-lowering effects of CA were associated with decreased enzyme activity and mRNA expression of genes involved in fatty acid, triglyceride, and cholesterol synthesis as well as increased activity of carnitine palmitoyltransferase, a rate-limiting enzyme in fatty acid oxidation, in the liver. CA-treated hamsters also exhibited decreased hepatic gluconeogenic enzyme activity and increased hepatic glycolytic enzyme activity, with mRNA expression changes similar to these activity patterns.
CONCLUSION: Our findings indicate that CA potentially improves metabolic abnormalities associated with excessive fructose intake, such as hyperglycemia, dyslipidemia, and NAFLD.

목차

ABSTRACT
INTRODUCTION
MATERIALS AND METHODS
RESULTS
DISCUSSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0