메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Jin-Kook Choi (Korea National University of Transportation) Jae-Kab Hwang (Korea National University of Transportation)
저널정보
한국항공우주의학협회 항공우주의학회지 한국항공우주의학회지 제35권 제1호(통권 제108호)
발행연도
2025.3
수록면
4 - 7 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Purpose: Line Operations Safety Audit (LOSA) has reduced errors by detecting and managing threats and errors of flight deck crew in the cockpit during normal flight operations. Airlines can understand the countermeasures and competencies of the crew and the success of error management. This paper introduces the advantages of LOSA and how LOSA data collection can be enhanced for the safety of flight operations.
Methods: It analyzed the components of data collection tool in the International Civil Aviation Organization Doc 9803, LOSA manual to find out the deficiencies for enhancement.
Results: Five suggestions are proposed in this study, codes for positive activities and the development of a form, the development of proactive strategies that predict threats in advance and manage the threats and management of errors, to describe the coding and narrative for successful briefings that manage threats and errors and codes for positive culture are required for successful LOSA data collection flight operations.
Conclusion: Safety Management System, Threat and Error Management, LOSA, and other conventional safety tools manage safety based on risk or failure, so if we change the paradigm, we can train more safety-resilient pilots. The tragic outcomes such as accidents or incidents have the problem of low occurrence probability, but if we supplement and utilize LOSA data of normal flights, we can prevent accidents or near-accidents in advance.

목차

Ⅰ. INTRODUCTION
Ⅱ. MATERIALS AND METHODS
Ⅲ. RESULTS
Ⅳ. DISCUSSION
Ⅴ. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0