메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Yassen Muhammad (Inje University) Abdullah Ali Maisam Shah Masoom Ali Hee Cheol Kim (Inje University)
저널정보
한국정보통신학회 INTERNATIONAL CONFERENCE ON FUTURE INFORMATION & COMMUNICATION ENGINEERING 2023 INTERNATIONAL CONFERENCE ON FUTURE INFORMATION & COMMUNICATION ENGINEERING Vo.14 No.1
발행연도
2023.1
수록면
49 - 53 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Brain controlled Prosthetics, utilizing electroencephalography (EEG), could potentially provide movement rehabilitation for people with movement disorders, though the process of converting brain thoughts into correct movements is challenging. Recent advances in machine learning, particularly deep neural networks, have improved the accuracy of computer vision systems in pattern recognition and classification. Although, it is necessary to compare classical EEG signal processing algorithms with advanced machine learning-based variants, such as those used in Brain-Computer Interfaces (BCIs). In this paper, we improved the performance of the machine model by adding multiple artifact removal techniques such as independent component analysis (ICA) and principal component analysis (PCA). We analyze the overall performance of the developed model which is much better than the state-of-art technique. These findings would aid BCI researchers in choosing a pipeline that is appropriate for their purpose and could aid in the creation of robot-aided therapies or serve as an interface for assistive technology.

목차

Abstract
Ⅰ. INTRODUCTION
Ⅱ. MATERIALS AND METHODS
Ⅲ. Results and Discussion
Ⅳ. Conclusion and Future work
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0