메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Nasir Rashid (National University of Sciences and Technology) Fahad Mahmood (National University of Sciences and Technology) Javaid Iqbal (National University of Sciences and Technology)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2018
발행연도
2018.10
수록면
508 - 512 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Brain computer interface (BCI) is targeted for decoding the EEG (Electroencephalogram) signals that the human brain generates which are beneficial for the paraplegic patients. These EEG signals are slow cortical potentials that are directly recorded from scalp thus cortical neuronal activity is explored via non-invasive electrodes. These EEG signals are then further utilized for performing various operations which the paraplegic patients are unable to perform. This research article presents a novel architecture of classification of four finger movements (thumb movement, index finger movement, middle and index finger combined movement and fist movement) of the right hand on the basis of EEG (Electroencephalogram) data of the movements. The presented architecture utilizes Guided filter for reduction of noise (artefacts) from EEG signals alpha and beta band (8-30 Hz). As this band contains the maximum information of movement in terms of motor imagery. Rank Transform is employed as feature extraction approach for further enhancement of processed EEG signals. Two stage Logistic Regression classifier is finally employed for classification of movements using processed EEG signals. The experimental results demonstrate the accuracy, robustness and computational complexity of the proposed approach and have significant improvement as compared with recent architectures for EEG classification.

목차

Abstract
1. INTRODUCTION
2. PROPOSED ARCHITECTURE
3. RESULTS AND DISCUSSION
4. CONCLUSION AND FUTURE WORK
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-003-003538698