메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Xiaodong Li (Huanghe Jiaotong University)
저널정보
대한전자공학회 IEIE Transactions on Smart Processing & Computing IEIE Transactions on Smart Processing & Computing Vol.14 No.1
발행연도
2025.2
수록면
45 - 56 (12page)
DOI
10.5573/IEIESPC.2025.14.1.45

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
With the rapid development of computer networks, the types and quantities of network failures are also significantly increasing. To apply fault-tolerant recognition to the detection of network interruption faults, a small-scale mathematical model for fault-tolerant recognition of network interruption faults is constructed. Firstly, small-scale network interrupts are identified. Then, fault-tolerant recognition is used to mathematically model network interrupts. Finally, simulation experiments are used to verify the performance of the mathematical model. The results showed that the successful running rates of the constructed mathematical model in random mode and hot mode were 89.63% and 81.95%, respectively. Under the same ratio, the average utilization rates in random mode and hotspot mode are 87.53% and 88.21%, respectively. This indicates that under the same conditions, the model has a high resource utilization rate, which can better complete data transmission. This verifies the application effect of the fault-tolerant recognition mathematical model in small-scale network interruption faults, aiming to provide a new research direction for fault-tolerant recognition of network interruption faults.

목차

Abstract
1. Introduction
2. Related Work
3. Construction of a Mathematical Model for Fault Tolerance Identification of Interruptions based on Small Time Scale Networks
4. Performance Analysis of a Mathematical Model based on Fault Tolerance Identification
5. Discussion
6. Conclusion
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-25-02-092296582