메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Devraj Ranjan (Tata Steel Ltd.) G. R. Dineshkumar (Tata Steel Ltd.) Rajesh Pais (Tata Steel Ltd.) Mrityunjay Kumar Singh (Tata Steel Ltd.) Mohseen Kadarbhai (Tata Steel Ltd.) Biswajit Ghosh (Tata Steel Ltd.) Chaitanya Bhanu (Tata Steel Ltd.)
저널정보
한국부식방식학회 Corrosion Science and Technology CORROSION SCIENCE AND TECHNOLOGY Vol.23 No.3
발행연도
2024.6
수록면
228 - 234 (7page)
DOI
10.14773/cst.2024.23.3.228

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Zinc wiping is a phenomenon used to control zinc-coating thickness on steel substrate during hot dip gal-vanizing by equipment called air knife. Uniformity of zinc coating weight in length and width profile alongwith surface quality are most critical quality parameters of galvanized steel. Deviation from tolerance levelof coating thickness causes issues like overcoating (excess consumption of costly zinc) or undercoatingleading to rejections due to non-compliance of customer requirement. Main contributor of deviation fromtarget coating weight is dynamic change in air knives equipment setup when thickness, width, and type ofsubstrate changes. Additionally, cold coating measurement gauge measure coating weight after solidifica-tion but are installed down the line from air knife resulting in delayed feedback. This study presents a coat-ing weight control model (Galvantage) predicting critical air knife parameters air pressure, knife distancefrom strip and line speed for coating control. A reverse engineering approach is adopted to design a pre-dictive, prescriptive, and descriptive model recommending air knife setups that estimate air knife distanceand expected coating weight in real time. Implementation of this model eliminates feedback lag experi-enced due to location of coating gauge and achieving setup without trial-error by operator.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0