메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
이재홍 (전남도립대학교)
저널정보
한국전자통신학회 한국전자통신학회 논문지 한국전자통신학회 논문지 제19권 제4호
발행연도
2024.8
수록면
701 - 708 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
딥러닝 분야에서 트랜스포머 아키텍춰의 출현은 자연어 처리 연구가 획기적인 발전을 가져왔다. 개체명 인식은 자연어 처리의 한 분야로 정보 검색과 같은 태스크에 중요한 연구 분야이다. 생의학 분야에서도 그 중요성이 강조되나 학습용 한국어 생의학 말뭉치의 부족으로 AI를 활용한 한국어 임상 연구 발전에 제약이 되고 있다. 본 연구에서는 한국어 생의학 개체명 인식을 위해 새로운 생의학 말뭉치를 구축하고 대용량 한국어 말뭉치로 사전 학습된 언어 모델들을 선정하여 전이 학습시켰다. F1-score로 선정된 언어 모델의 개체명 인식성능과 태그별 인식률을 비교하고 오류 분석을 하였다. 인식 성능에서는 KlueRoBERTa가 상대적인 좋은 성능을 보였다. 태깅 과정의 오류 분석 결과 Disease의 인식 성능은 우수하나 상대적으로 Body와 Treatment는 낮았다. 이는 문맥에 기반하여 제대로 개체명을 분류하지 못하는 과분할과 미분할로 인한 것으로, 잘못된 태깅들을 보완하기 위해서는 보다 정밀한 형태소 분석기와 풍부한 어휘사전 구축이 선행되어야 할 것이다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0