메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
멀타자 (경성대학교) 김예지 (경성대학교)
저널정보
경성대학교 산업개발연구소 산업혁신연구 산업혁신연구 제40권 제3호
발행연도
2024.9
수록면
1 - 6 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
ABSTRACT Due to the simplicity of the k-nearest neighbor classification algorithm, it has been widely used in many fields. Until now, when the sample size is enormous and the feature attributes are outsized, the productivity of the k-nearest neighbor algorithm classification has also significantly increased. This work demonstrates that a k-nearest neighbor-based data mining technique has been utilized for data index to gather data and analyze an outpatient facility's clinical data set. Therefore, the investigational results show that the suggested algorithm can effectively improve the classification effectiveness of the KNN algorithm in processing a large set of data. Data extraction and fetching techniques can classify possible user/customer behavior using the k-nearest neighbor algorithm based on the user or consumer's impression, entailing prospects, responders, active entities, and different entities. Data mining methods have been utilized to uncover undisclosed patterns and relations. Undoubtedly, the information in a novel manner is reasonable to the healthcare stakeholders and to anticipate future patterns and practices in health-related practices. Many examinations and work have focused on various data mining strategies and approaches. The advanced growth of data science, information, and communication technology has directed the progress of medical-based details toward new artificial intelligence-based processes and data sciences.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0