메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Ji Hae Lee (농촌진흥청 국립농업과학원) Jong Woo Park (National Institute of Agricultural Sciences) Seong-Wan Kim (Rural Development Administration) Sang Kuk Kang (농촌진흥청 국립농업과학원) 박슬기 (농촌진흥청 국립농업과학원 농업생물부 곤충양잠산업과) 권혁규 (국립농업과학원 농업생물부) Seong Ryul Kim (Rural Development Administration)
저널정보
한국잠사학회 International Journal of Industrial Entomology International Journal of Industrial Entomology and Biomaterials 제48권 제3호
발행연도
2024.9
수록면
107 - 113 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
The efficiency of protein extraction from Hongjam, a steamed mature silkworm, was quantitatively evaluated using various chemical buffers and physical methods. This study considers the difficulty of protein extraction yield due to the high content of hydrophobic amino acids in Hongjam compared to 5th instar-3rd day silkworm larvae. Results indicated that urea buffer enhanced protein yield more effectively than RIPA buffer. Additionally, the application of physical methods such as microwave treatment to samples treated with RIPA buffer increased yields by up to 22%, achieving concentrations as high as 3.9 mg/mL. Circular dichroism (CD) analysis showed that proteins extracted with urea buffer retained their structural integrity, exhibiting deeper and more prominent peaks associated with random coil structure. In addition, physical methods such as vortexing, sonication, microwave and homogenization increased the extraction yield of larger molecules without altering protein structures, suggesting their potential scalability for industrial applications. These results demonstrate the critical role of selecting appropriate extraction methods to optimize the yield and functionality of proteins from Hongjam, with implications for its use in biotechnological applications and nutraceuticals.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0