메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
양건우 (차의과학대학교) 홍정기 (차의과학대학교) 이제욱 (중앙대학교) 박승보 (차의과학대학교)
저널정보
한국사회체육학회 한국사회체육학회지 한국사회체육학회지 제99호
발행연도
2025.1
수록면
9 - 16 (8page)
DOI
10.51979/KSSLS.2025.01.99.9

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Purpose: This study aims to develop a drone-based running coaching platform that integrates real-time movement tracking, environmental data analysis, and personalized feedback to enhance performance and safety in long-distance running activities, such as marathons. The system combines drones, augmented reality (AR) glasses, wearable devices, AI-based data analysis, and large language model (LLM)-powered coaching.
Method: The proposed system utilizes drones equipped with high-resolution cameras and motion detection capabilities to monitor runners’ postures, strides, and landing patterns. AR glasses provide real-time environmental information, including terrain and weather conditions. Wearable devices track physiological data such as heart rate and oxygen saturation, while the collected data are transmitted to a cloud server for analysis using machine learning models. Personalized coaching is delivered through an LLM system that provides real-time feedback and advice tailored to the runner’s specific needs and conditions.
Results: The integrated system effectively captures and analyzes real-time data, offering customized feedback to improve running efficiency and prevent injuries. The drone-based motion detection system accurately monitors movement, while the AR glasses provide environmental insights. Machine learning models analyze user data to generate personalized training strategies, and the LLM-powered coaching system provides interactive situation-specific guidance. The system demonstrated the ability to optimize the performance while ensuring safety in different running environments.
Conclusion: This research highlights the potential of combining advanced technologies to create an innovative coaching platform for long-distance running. The system addresses limitations of traditional coaching methods by integrating real-time data collection and analysis, environmental adaptability, and personalized feedback. Future work will focus on validating the reliability and scalability of the system in various practical settings, paving the way for broader applications in sports and rehabilitation.

목차

Ⅰ. 서론
Ⅱ. 연구방법
Ⅲ. 결과
Ⅳ. 결론 및 제언
참고문헌
ABSTRACT

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-25-02-092322210