메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Hossein Moayedi (Duy Tan University) Ziqi Liu (University of Manchester) Mehmet Akif CIFCI (Bandirma Onyedi Eylul University) Mohammad Hannan (Shiraz University of Technology) Erkut Sayin (Fırat University)
저널정보
국제구조공학회 Smart Structures and Systems, An International Journal Smart Structures and Systems, An International Journal 제34권 제3호
발행연도
2024.9
수록면
181 - 201 (21page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
This study presents a comparative analysis of three nature-inspired algorithms—Black Hole Algorithm (BHA), Earthworm Optimization Algorithm (EWA), and Future Search Algorithm (FSA)—for predicting the compressive strength of masonry structures. Each algorithm was integrated with a Multilayer Perceptron (MLP) model, using a structural dimension, rebound number, ultrasonic pulse velocity, and failure load dataset. The dataset was divided into training (70%) and testing (30%) subsets to evaluate model performance. Root Mean Square Error (RMSE) and the coefficient of determination (R<sup>2</sup>) were employed as statistical indices to measure accuracy. The BHA-MLP model achieved the best performance, with an RMSE of 0.04731 and an R<sup>2</sup> of 0.9995 for the training dataset and an RMSE of 0.06537 and an R<sup>2</sup> of 0.99877 for the testing dataset, securing the highest overall score. FSA-MLP ranked second, demonstrating strong predictive performance, followed by EWAMLP, which performed with lower accuracy but still showed valuable results. The study highlights the potential of using these nature-inspired optimization algorithms to enhance the predictive accuracy of compressive strength in masonry structures, offering insights for engineering and policymaking to improve structural safety and performance.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0