메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Zhang Zuoyi (Tsinghua University) Zou Quan (Tsinghua University) Gui Nan (Tsinghua University) Xia Bing (Tsinghua University) Liu Zhiyong (Tsinghua University) Yang Xingtuan (Tsinghua University)
저널정보
한국원자력학회 Nuclear Engineering and Technology Nuclear Engineering and Technology Vol.56 No.9
발행연도
2024.9
수록면
3,835 - 3,850 (16page)
DOI
10.1016/j.net.2024.04.032

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
The high-temperature gas-cooled reactor (HTGR) with spherical fuel elements contains complex pebble flow. The flow behavior of pebbles is influenced by various factors, such as pebble density, friction coefficient, wall structure, and discharge port size. Using a GPU-DEM numerical model, the effects of the friction coefficient on the cyclic loading and unloading of pebbles in the full-scale HTR-PM are studied. Numerical simulations with up to 420,000 spherical pebbles are conducted. Four sets of friction coefficient values are determined for comparative analysis based on experimental measurements. Discharging speed, residence time, stress, porosity, and velocity distribution are quantitatively analyzed. In addition, a comparison with the CT-PFD experiment is carried out to validate the numerical model. The results show that near-wall retention phenomena are observed in the reactor core only when using large friction coefficients. However, using friction coefficient values closer to the measured experimental values, the pebble bed in HTR-PM exhibited good flow characteristics. Furthermore, the friction coefficient also influences the porosity and velocity distribution of the pebble bed, with lower friction coefficients resulting in lower overall stress in the bed. The discharge outlet’s influence varies with different friction coefficient values. In summary, this study demonstrates that the value of the friction coefficient has a complex influence on the pebble flow in HTR-PM, which provides important insights for future numerical and experimental studies in this field.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0