메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
조혜선 (조선대학교) 이상현 (조선대학교) 나만균 (조선대학교)
저널정보
한국원자력학회 Nuclear Engineering and Technology Nuclear Engineering and Technology Vol.56 No.9
발행연도
2024.9
수록면
3,594 - 3,601 (8page)
DOI
10.1016/j.net.2024.04.009

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
It is difficult to detect a small-scale leakage in a nuclear power plant (NPP) quickly and take appropriate action. Delaying these procedures can have adverse effects on NPPs. In this paper, we propose leak flow rate prediction using the bidirectional gated recurrent unit (Bi-GRU) method to detect leakage quickly and accurately in smallscale leakage situations because large-scale leak rates are known to be predicted accurately. The data were acquired by simulating small loss-of-coolant accidents (LOCA) or small-scale leakage situations using the modular accident analysis program (MAAP) code. In addition, to improve prediction performance, data were collected by distinguishing the break sizes in more detail. In addition, the prediction accuracy was improved by performing both LOCA diagnosis and leak flow rate prediction in small LOCA situations. The prediction model developed using the Bi-GRU showed a superior prediction performance compared with other artificial intelligence methods. Accordingly, the accurate and effective prediction model for small-scale leakage situations proposed herein is expected to support operators in decision-making and taking actions.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0