메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김우식 (한국원자력연구원) 권태순 (한국원자력연구원)
저널정보
한국유체기계학회 한국유체기계학회 논문집 한국유체기계학회 논문집 제26권 제4호(통권 제139호)
발행연도
2023.8
수록면
46 - 53 (8page)
DOI
10.5293/kfma.2023.26.4.046

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (4)

초록· 키워드

오류제보하기
The real time detection of small leak flow is very important for the nuclear reactor safety. The early perception of the malfunction of the nuclear system due to the coolant leak can give a sufficient time required for the operator action. In the present study, an improved concept of small leak detection system was proposed and an experimental facility to evaluate the performance of the system was constructed. In the small leak detection system, the leaked steam is sampled using porous type sampling devices which are installed on the air circulation loop and the time variation of the humidity on the down stream of the loop is measured in real time. The main concept of the system proposed in the present study is to achieve fast and obvious leak detection with the aid of suction mode during the air circulation loop operation. Using the test facility, high pressure saturated steam under the condition of real nuclear power plant operation could be supplied to the test section. The small leakage flow was simulated on the wall of the pipe system simulator and the time variation of the humidity due to the leakage was detected through the circulation loop. The effects of the suction time, the air circulation loop length, and the distance form the leak point to the porous sampling device on the humidity signal were investigated. And also the leak detection performance using suction mode operation was compared to that using diffusion mode operation, which showed that faster and clearer leak detection.

목차

ABSTRACT
1. 서론
2. 원전 누설감지 모의 실험장치
3. 누설 감지 성능 실험
4. 결론
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0102-2023-554-001946702