메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Abbasi Fashami Sajjad (Engineering Department, Shahid Beheshti University) Zangian Mahdi (Engineering Department, Shahid Beheshti University) Minuchehr Abdolhamid (Engineering Department, Shahid Beheshti University) Zolfaghari Ahmadreza (Engineering Department, Shahid Beheshti University)
저널정보
한국원자력학회 Nuclear Engineering and Technology Nuclear Engineering and Technology Vol.56 No.8
발행연도
2024.8
수록면
3,425 - 3,434 (10page)
DOI
10.1016/j.net.2024.03.042

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
The main features of the loading pattern optimization (LPO) problem, such as high-dimensionality, multi-modality, and non-linearity, make it difficult to achieve a truly optimal configuration. In recent years, metaheuristic methods have been successfully used to solve this problem. In this research, a discrete golden eagle optimization (DGEO) algorithm has been developed to solve the LPO problem in the first cycle of VVER-1000 reactor core. To evaluate the proposed algorithm, a linear multi-purpose fitness function has been used to improve the safety parameters of the reactor core by obtaining a flatter power distribution during the first cycle, and also to enhance the economic parameters by increasing the cycle length and reducing the cost of fuel recycling. For this purpose, a FORTRAN program has been written to map the DGEO algorithm for the LPO problem using the PMAX and PARCS core calculation code to compute the fitness function in each iteration. To speed up the calculations, parallel computing has been applied in the written program. The results demonstrated that the loading pattern, which is suggested by the DGEO algorithm, enhances all the safety and economic parameters in the fitness function. Thus, the DGEO algorithm is highly reliable for the LPO problems in the VVER 1000 reactor core

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0